

Hochschule für Technik und Wirtschaft Berlin

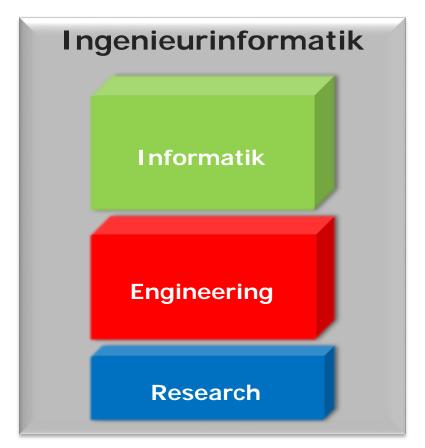
University of Applied Sciences

Vorstellung Master Informatik in den Ingenieurwissenschaften

Prof. Dr.-Ing. Mohammad Abuosba

03.11.2021

Master IIW



Master IIW

- Planung des Masterstudiengangs "Informatik in den Ingenieurwissenschaften" (IIW) für WS 2022 mit zwei Vertiefungsschwerpunkten:
 - Ingenieurinformatik (20): Fortsetzung des Bachelors Ingenieurinformatik
 - Angewandte Forschung(20):
 Forschungsorientiert im Bereich IT im Ingenieur-wesen (Master by Research)

Prinzipieller Masteraufbau

Orientierung

Ziele und Orientierung

- Gemeinsames Ausbildungsziel beider Tracks ist ein Ausbau und Vertiefung von IT-Know-how im Ingenieurwesen
- Der Studiengang ist forschungsorientiert
- Zulassungsvoraussetzung ist für beide Tracks gleich
- Im ersten Semester findet eine Orientierung, Beratung und Festlegung eigener Schwerpunkte statt
- Wahl eines eigenen Forschungsthemas erfolgt dann verbindlich zum Ende des ersten Semesters

Zielgruppen

- Ingenieurinformatiker, die im konsekutiven Masterstudiengang forschungsaktiv weiterstudieren wollen
- IT-affine Ingenieure, die ihr IT-Wissen intensivieren und ausbauen wollen (insb. auch Absolventen der FB2-Bachelorstudiengänge)
- Forschungsaffine Ingenieure, die ihr eigenes Forschungsthema aus ihrer industriellen Praxis mitbringen (forschungsgetriebenes Dualstudium)
- Bewerbung soll ggf. ein Motivationsschreiben enthalten

Zulassungsvoraussetzung

- Der Studiengang ist konsekutiv zu II, MB, FT und UI
- Auswahlordnung für Masterstudiengänge gemäß AO-Ma
 - Berufserfahrung (40%)
 - Abgeschlossenes Bachelorstudium in folgenden Studiengängen (60%)

Studiengang	Wert
II, MB, FT, UI, BI, LSE, FM, GEIT, GE, ET	1,0
AI, WIW, RE, ET, MS, GE, CE, WI	1,6
IKT, KT, NT, FIW, IMI	2,6
inhaltlich vergleichbare ingenieurwissenschaftliche oder Informatik-Studiengänge	3,6

Masteraufbau

- Ingenieurinformatik (ca. 20 Studenten)
 - Weitgehend konsekutives und in Teilen forschungsorientiertes Curriculum mit den Schwerpunkten:
 - Simulation & Autonome Systeme
 - Robotik
 - Data Science
 - Enterprise Architecture & Vernetzung
 - Forschungsprojekt(e)
- Angewandte Forschung (ca. 20 Studenten)
 - Orientierung und Themenwahl im ersten Semester
 - hoher Anteil Forschungsprojekte im 2. und 3. Semester (20 LP)
 - 10 LP Wahlfächer, die IT-Themen im Ingenieurwesen adressieren:
 - PIM & BIM
 - Sensorik & Messtechnik in Verbindung mit Data Science
 - Autonome Systeme
 - oder Wahlfächer aus dem Master-Angebot des FB passend zum Forschungsthema
- Studienplätze können je nach Nachfrage ggf. auch anders verteilt werden (z.B. 10 Schwerpunkt II, 30 Schwerpunkt Forschung)

Einordnung IIW in das Profil der Hochschule

- Der Studiengang beinhaltet vier wesentliche Aspekte, die in das Profil der HS hineinpassen:
 - "Master by Research" wird erstmalig an der HS angeboten
 - Profs. des FB2 erhalten ein sehr gutes Instrument, Studenten früh für die Forschung zu begeistern und in ihre Forschungsprojekte zu integrieren
 - IT-Defizite traditioneller Engineering-SG's werden behoben
 - II-Absolventen können besser an der HS gehalten werden und ihr Masterstudium fortsetzen

Zielkompetenzen der Absolventen

- Am Ende des Studiums sollen die Absolventen/innen befähigt sein, moderne IT-Technologien in ingenieurwissenschaftlichen Problemstellungen einzusetzen und zukunftsweisende Lösungen zu generieren, z.B.:
 - Absicherung der Produkte durch virtuelle softwaretechnische Methoden und Simulation
 - Prädiktive Wartung von Maschinen oder Fahrzeugen sowie verbesserte Nutzungsszenarien mittels BigData Analyse
 - Navigations- und Steuerungstechniken von autonomen Systemen oder Robotern
 - Cloud- und Edge-Computing systemrelevanter
 Komponenten durch Einsatz von 5G Technologien
- Der angestrebte SG deckt damit einen konkreten Bedarf der Industrie ab, verkürzt die Einarbeitungszeit und erhöht damit die Karrierechancen der Absolventen deutlich

grün: Ingenieurinformatik rot: Angewandte Forschung blau: gemeinsame Fächer

Nr.	Modulbezeichnung	Art	Form	sws	LP	NSt	NV	EV
M1	Forschungsmethoden und -modelle	Р	SL	4	5	2a	-	-
M2	Orientierungs-Seminar	WP	PS	2	5	2a	-	-
М3	Simulation	Р	SL/ PCÜ	2/2	5	2a	-	-
M4	WP-Modul 1: IT-Vertiefung 1	WP			5			
M4.1	Vertiefung Software Engineering oder		PÜ/ PCÜ	2/2		2a	-	-
M4.2	Softwareentwicklung		PÜ/ PCÜ	2/2		2a	-	-
M5	WP-Modul 2: IT-Vertiefung 2	WP			5			
M5.1	Webtechnologie und -programmierung oder		PÜ/ PCÜ	2/2		2a	-	-
M5.2	3D-Visulaisierung		PÜ/ PCÜ	2/2		2a	-	-
M6	WP-Modul 3: Engineering Vertiefung	WP			5		-	-
M6.1	Robotik oder		PÜ/ PCÜ	2/2		2a		
M6.2	Nachhaltiges Engineering		PÜ	4		2a		
	Summe Semester			6/16	30			

Ш	AF
Χ	Х
Χ	X
Χ	Х
Х	
	(X)
(X)	
	(X)
(X)	(X)
(X)	(X)

Legende: grün: Ingenieurinformatik rot: Angewandte Forschung blau: gemeinsame Fächer

Nr.	Modulbezeichnung	Art	Form	sws	LP	NSt	NV	EV
M7	Data Science	WP	PÜ/ PCÜ	2/2	5	2a		
M8	Software- & Webarchitekturen	WP	PÜ/ PCÜ	2/2	5	2a		
M9	Cloud und Parallel Computing	WP	PÜ/ PCÜ	2/2	5	2b		4.1
M10	Sensorik und Messtechnik	WP	PÜ/ PCÜ	2/2	5	2a		
M11	Forschungsprojekt	WP	PS	4	20	2a		
M12	WP-Modul 4: IT	WP			5			
M12.1	Usability Engineering oder	WP	PÜ	4		2a		
M12.2	NoSQL DBS	WP	PÜ/ PCÜ	2/2		2a		
M13	WP-Modul 5: Engineering	WP			5			
M13.1	Automatisierte Produktion oder	WP	PÜ/ PCÜ	2/2		2a		
M13.2	PLM & BIM	WP	PÜ/ PCÜ	2/2		2a		
	Summe Semester				28			

Ш	AF
X	
X	
X	
X	
	Χ
(X)	(X)
(X)	(X)
(X)	(X)
(X)	(X)

Legende: grün: Ingenieurinformatik rot: Angewandte Forschung blau: gemeinsame Fächer

Nr.	Modulbezeichnung	Art	Form	sws	LP	NSt	NV	EV
M14	Machine Learning	WP	PÜ/ PCÜ	2/2	5	2a	-	-
M15	WP-Modul 6: Engineering	WP			5			
M15.1	Autonome Systeme oder		PÜ/ PCÜ	2/2		2b	-	6.1 10
M15.2	Prozessautomatisierung		PÜ/ PCÜ	2/2		2a		
M16	Forschungsprojekt II	WP	PS	3	11	2a		
M17	Forschungswerkstatt	WP	PS	3	16	2a		
M18	WP-Modul 7	WP			5			
M18.1	Information Security oder	WP	ΡÜ	2		2a		
M18.2	Unternehmens- und Personalmanagement für Ingenieure	WP	PÜ	2		2a		
M19	AWE-Modul 1	WP	PÜ	2	2	2a	-	-
M20	AWE-Modul 2	WP	PÜ	2	2	2a	-	-
	Summe Semester			20	30			

10	AF
X	
(X)	(X)
(X)	(X)
Χ	
	X
(X)	(X)

Legende:						
grün:	Ingenieurinformatik					
rot:	Angewandte Forschung					
blau:	gemeinsame Fächer					

Nr.	Modulbezeichnung	Art	Form	sws	LP	NSt	NV	EV
M21	Masterarbeit	Р	MA		25	2b	s. § 10	
M22	Abschlusskolloquium/ Masterseminar	Р			5	2b	s. § 11	
M22.1	Masterseminar		PS	1				
	Summe Semester			1	30			
	Summe gesamt				120			

Ш	AF
X	X
Χ	X

Fazit Master

- Befürwortung des Masters durch die HSL und den FBR
- Großes Interesse, daher Befürwortung durch Industriepartner
- Kapazitäten sind rechnerisch vorhanden
- Professur und LaborIng. werden aus bereits eingeworbenen KI-Forschungsprojekten teilfinanziert und eingebunden!
- Verfügbarkeit sehr guter, engagierter LBs, die auch in der Industrie tätig sind und durch die Lehrtätigkeit Studierende gewinnen wollen
- Angebot auch für Bachelor-Absolventen, die in Firmen forschungsmäßig unterwegs sind, auch hier bietet sich ein Potential für die Industriepartner der II und anderer SGs
- Alleinstellungsmerkmal für FB2 und der HTW durch Master-By-Research Konzept

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Vielen Dank für Ihre Aufmerksamkeit!

Prof. Dr.-Ing. Mohammad Abuosba

htuu